Course Schedule of MST Program ,TIGP

Semester: Fall, 2009(98 學年度上學期)

Course(科目): Modern Experimental Techniques 現代實驗技術

Time(時間): F6F7F8 Friday (14:20~17:10)

Room(教室):311 IAMS 311 IAMS 中研院原分所 R311(台大校園)

NTHU coordinator(清大教師): 倪其焜

Course speakers(授課老師): Jim Lin 林志民、Ker-Jar Song 宋克嘉教授、

Juen-Kai Wang 王俊凱、Jyhpyng Wang 汪治平教授、

Yuh-Lin Wang 王玉麟教授、

Required(必修課), credit(學分): 3 Course No.(科號): TIGP722100

Date	lecturer	Date	lecturer
9/18 Friday 14:20~17:00	Prof. Ker-Jar Song	11/13 Friday 14:20~17:00	Prof. Jyhpyng Wang
9/25 Friday 14:20~17:00	Prof. Jyhpyng Wang	11/20 Friday14:20~17:00	Prof. Jyhpyng Wang
10/2 Friday 14:20~17:00	Prof. Jyhpyng Wang	11/27 Friday 14:20~17:00	Prof. Jim Lin
10/9 Friday 14:20~17:00	Prof. Jyhpyng Wang	12/4 Friday 14:20~17:00	Prof. Jim Lin
10/16 Friday 14:20~17:00	Prof. Juen-Kai Wang	12/11 Friday 14:20~17:00	Prof. Jim Lin
10/23 Friday 14:20~17:00	Prof. Juen-Kai Wang	12/18 Friday 14:20~17:00	Prof. Jim Lin
10/30 Friday 14:20~17:00	Prof. Juen-Kai Wang	12/25 Friday 14:20~17:00	Prof. Yuh-Lin Wang
11/6 Friday 14:20~17:00	Prof. Juen-Kai Wang	1/8/2010 Friday 14:20~17:00	Prof. Ker-Jar Song

The course of Modern Experimental Techniques is composed of four component mini-courses: (1) Vacuum Technology taught by Profs. Ker-Jar Song and Jim Jr-Min Lin, (2) Optics, Lasers, and Optical Signal Detection taught by Prof. Juen-Kai Wang, (3) Laboratory Electronics taught by Prof. Jyhpyng Wang, and (4) Charged-Particle Optics taught by Prof. Yuh-Lin Wang. An introduction of each component mini-course is listed below:

	Part 1 (4 Weeks)
Speaker	Prof. Jim Lin
	林志民教授
	Part 2 (2 Week)
	Prof. Ker-Jar Song
	宋克嘉教授
	(1) Vacuum Technology
	List of subjects:
Class Outline	Part I: mean free path, gas flow, adsorption and desorption
	Part II: pressure measurements, pumps, traps, chambers,
	valves, leaks, etc.

Introduction	 Do and don't, stories and lessons learned from years of ultra-high vacuum practice. Experimenting with a real ultrahigh vacuum system for one week. A residual gas analyzer is available so that students get to know what happens in the chamber for each step of his operation. Students will practice venting the system, replacing components, pumping it down, leak/dirt testing, baking, e-beam bombardment, and all kind of tricks that can help bring good vacuum the fastest way.
Grading	40% from written examination on general principles of vacuum technology, 60% from how good a vacuum one can obtain.
Textbook	 Building Scientific Apparatus, 2nd edition or 3rd edition by Moore, Davis and Coplan Operating manuals of components of the UHV system.

	Part 3 (4 Weeks)	
Speaker	Prof. Juen-Kai Wang	
	王俊凱教授	
Class Outline	 (2) Optics, Lasers, and Optical Signal Detection List of subjects: 1. ABC of optical components: optics, opto-mechanics, vibration isolation and motion control 2. Know your laser system: basic principles, laser engineering, frequency conversion and laser safety 3. Detect optical radiation: intensity, wavelength, polarization and phase 4. Build an optical instrument: initial concept, computer drawing/simulation, revision and construction 	
Introduction	This course is to provide basic knowledge to use optical and laser instruments in laser laboratories and eventually to have a basic training about how to construct an optical setup for a specific experiment. Furthermore, the course provides a hand-on experimental experience to learn how to manipulate optical components.	
Grading	 A construction plan for an optical setup: proposal (10%), computer drawing (20%), item list (10%), report (20%) A hand-on experiment: on-site experimental test (20%), Experimental report (20%). 	

Textbook	1. Fundamentals of Photonics, B. E. A. Saleh and M. C. Teich	
	(John Wiley & Sons, New York 1991).	
	2. Laser Spectroscopy: Basic concepts and instrumentation, W.	
	Demtröder (Springer-Verlag, Berlin, 1996)	

	Part 4 (5 Weeks)
Speaker	Prof. Jyhpyng Wang
	汪治平教授
Class Outline	(3) Laboratory Electronics
	List of subjects:
	Part 1: circuit construction: circuit elements and diagrams,
	construction and diagnosis tools, soldering and assembling,
	shielding and grounding, circuit protection
	Part 2: basic electronics: diodes and transistors, impedance
	and passive filters, amplifiers, active filters and oscillators,
	negative-feedback control, digital circuits, digital/analog
	interface
	In a modern laboratory, data are transmitted by electronic
	signals. Machines are also controlled by electronic signals.
	Therefore it is extremely important for students to know what
	is going on behind the switches, knobs, cables, detectors, etc.
	In this course we will teach students the basics of real-world electronics. In part 1, we begin with an extensive introduction
	to common electronic components and tools, and then we
	teach some important techniques of circuit construction. In
Introduction	part 2, we shall discuss common building blocks of electronic
	circuits. Starting from the most basic diodes and transistors,
	we show the construction of filters, amplifiers, and oscillators.
	Then we move to feedback control, and finally to digital
	circuits and digital/analog interface. These building blocks are
	so often used in laboratory electronics that by knowing them
	well, students can build up the confidence in handling
	laboratory electronics.
Grading	1. Constructing a working electronic device, such as an
	electronic clock, a stepping motor system, a function
	generator, a regulated power supply, etc. (50%)
	2. Written examination. (50%)
Textbook	The art of electronics, 2nd ed. Horowitz and Hill, Cambridge
	Univ. Press.

Speaker	Part 4 (1Weeks)	
	Prof. Yuh-Lin Wang	
	王玉麟教授	
Class Outline	(4) Charged-Particle Optics	
	List of subjects:	
	1. Solving the Laplace equation for a rotationally symmetric	
	electrostatic and magnetic fields	
	2. Trajectory of charged particles in static electric and	
	magnetic fields	
	3. Gaussian imaging by charged particle	
	4. Electrostatic lenses, scanning electron microscope and	
	focused ion beam	
Introduction	Basic principles of image formation using electron or ion	
Introduction	beam and a brief introduction to electron and ion microscopy	
Grading	Homework assignment	
Textbook	Aberration Theory in Electron and Ion Optics (Ximen Jiye,	
	Academic Press, 1986).	